Asymptotic Link Invariants for Ergodic Vector Fields

نویسنده

  • SEBASTIAN BAADER
چکیده

We study the asymptotics of a family of link invariants on the orbits of a smooth volume-preserving ergodic vector field on a compact domain of the 3-space. These invariants, called linear saddle invariants, include many concordance invariants and generate an infinite-dimensional vector space of link invariants. In contrast, the vector space of asymptotic linear saddle invariants is 1-dimensional, generated by the asymptotic signature. We also relate the asymptotic slice genus to the asymptotic signature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Vassiliev Invariants for Vector Fields

We analyse the asymptotical growth of Vassiliev invariants on non-periodic flow lines of ergodic vector fields on domains of R. More precisely, we show that the asymptotics of Vassiliev invariants is completely determined by the helicity of the vector field. As an application, we determine the asymptotic Alexander and Jones polynomials and give a formula for the asymptotic Kontsevich integral.

متن کامل

Geometry of Higher Helicities

We revisit an interpretation of higher-dimensional helicities and Hopf–Novikov invariants from the point of view of the Brownian ergodic theorem. We also survey various results related to Arnold’s theorem on the asymptotic Hopf invariant on three-dimensional manifolds and recent work on linking of a vector field with a foliation, the asymptotic crossing number, short path systems, and relations...

متن کامل

Linking Numbers of Measured Foliations

We generalise the average asymptotic linking number of a pair of divergence-free vector fields on homology threespheres [1, 2, 14] by considering the linking of a divergence-free vector field on a manifold of arbitrary dimension with a codimension two foliation endowed with an invariant transverse measure. We prove that the average asymptotic linking number is given by an integral of Hopf type....

متن کامل

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

Ergodic and Mixing Properties of the Boussinesq Equations with a Degenerate Random Forcing

We establish the existence, uniqueness and attraction properties of an ergodic invariant measure for the Boussinesq Equations in the presence of a degenerate stochastic forcing acting only in the temperature equation and only at the largest spatial scales. The central challenge is to establish time asymptotic smoothing properties of the Markovian dynamics corresponding to this system. Towards t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008